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Abstract 

For decades, the evidence hierarchy - which places randomized controlled trials (RCTs) and systematic reviews at its 
apex – has contributed positively to decision-to-treat considerations. Nonetheless, RCTs have often failed to reveal 
efficacy and safety concerns relating to the studied treatments. Moreover, many of the questions posed in clinical 
practice are best answered by means other than RCTs. This discussion examines the flaws in RCT statistical 
methodology that contribute to their limitations. It also presents novel methodologies, that combine RCT data with 
observational data, and thereby enable clinicians to make personalized treatment decisions for individual patients – 
something RCTs alone cannot do. Finally, this discussion explores what constitutes the best evidence to answer the 
many questions clinicians confront on a daily basis. The upshot is a flattened evidence hierarchy wherein RCTs, 
observational studies and novel methodologies are placed in their proper context, so that their relevance to clinical 
medicine is neither exaggerated nor ignored. 

Keywords: Evidence-based medicine, Randomized controlled trials, EBM, RCT, Clinical trial, 
Reproducibility, Precision medicine, Causal inference, Statistical flaws. 

INTRODUCTION  

Under the aegis of Evidence Based Medicine (EBM) randomized control trials (RCTs) and their systematic 

reviews have been elevated to the apex of the truth pyramid, while anecdotes and other observational 

information have been relegated to the netherworld of suspicion and doubt [1-4]. This evidence hierarchy, 

as it is called, was initially promoted by Shannaussy and others to encourage refinements in the decision-

to-treat methodologies of practicing clinicians [5]. However, owing in part to its adoption by Cochran and 

other investigative and regulatory institutions, the evidence hierarchy is now afforded an almost-scriptural 

status. The result, in both medical research and clinical practice, is a reflexive disdain for all things not-RCT 

– namely, anecdotes, case series and observational studies [6].  

Notwithstanding their ascendency, RCTs have failed to produce the relevant efficacy and safety data their 

heightened status would seem to imply. With respect to efficacy, the top ten drugs sold in the US – all 

studied in RCTs - fail to improve the condition being treated in 75-96% of patients who take them [7]. With 

respect to safety, prescription medicines have now become the third leading cause of death in the US and 

Europe [8].  

The first purpose of this paper is to demonstrate the inherent limitations of RCT methodology as applied in 

clinical medicine [9]. The second purpose is to elevate observational data to its rightful place, through 

consideration of new and exciting developments from the world of causal inference [10]. Finally, we intend 

to place the RCT in its proper context, so that its relevance to clinical medicine is neither exaggerated nor 

ignored. 

LOOKING MORE CLOSELY AT RCTs 

Even in the absence of bias and influence there are fundamental limitations to RCTs that require our 

present attention. Understanding these limitations will lend caution to our interpretation and usage of 

RCT results [9].  

COMPARISON OF AVERAGES 

“The core methodological idea in clinical trials is the comparison of averages.” (ibid, pg. 4) However, this 

methodology can be and often is misleading. As Hanin observes: “The seemingly appealing idea that the 
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best intervention is the one that works best on the average may be 
true in the case of homogeneous responses. However, as a general 
comparison principle, it represents a fundamental fallacy.” (ibid, pg.4) 

Consider this scenario. Two treatments (#1, #2) are each compared 
with the standard treatment (#3). All sample populations are matched 
for age, gender, underlying conditions, medications and other typical 
characteristics. The magnitude of the treatment responses are as 
follows: 

Table 1: Magnitude of the treatment responses in populations 

Treatment One Half of 
Sample 

Other Half of 
Sample 

Average 
Outcome 

Treatment #1 0 2 1 

Treatment #2 2 0 1 

Treatment #3 1.5 1.5 1.5 

 

Standard statistical comparison of averages for this data will show 
treatment #3 to be the most efficacious. Accordingly, treatments #1 
and #2 will be dismissed as inferior. However, we should note that 
treatment #3 is, in fact, 25% less effective than the other treatments 
on the responsive halves of their respective sample populations. The 
statistical comparison of averages, has failed to reveal the very real - 
albeit, circumscribed – efficacy of treatments #1 and #2. 

Moreover, we should note that this comparison takes into account only 
benefits. Of course, RCTs do record side effects. But again, a 
comparison of averages with respect to adverse events – especially 
when the data from various substrata are aggregated - would not 
pinpoint which individuals or strata are most prone to adverse events.  

SAMPLE HOMOGENEITY 

Another fundamental assumption underlying the statistical analysis of 
RCT data is sample homogeneity. However, the data above 
demonstrate that sample homogeneity is not the case in the example 
cited, despite the samples being “well-matched.” As is often the case, 
our parameters for matching RCT participants have somehow failed to 
achieve homogeneity within and between sample populations with 
respect to relevant parameters.   

Imagine, for example, that two traits (A and B) are discovered after this 
clinical trial is completed. Such traits might be invisible (e.g. a serum 
biomarker, a mental characteristic) or visible (e.g. some phenotypic 
characteristic). The responsive half of Sample #1 is positive for trait A, 
while the unresponsive half is negative for trait A. Both treatment #1 
halves are negative for trait B.  

Similarly, the responsive half of Sample #2 is positive for trait B, while 
the unresponsive half is negative for trait B. Again, both treatment #2 
halves are negative for trait A.  

Further, we discover that all of the treatment #3 sample population is 
positive for both traits A and B.  

Now, all we need do is screen for traits A and B in order to decide 
which treatment will be most effective for any individual. Those 
positive for trait A and negative for B will receive treatment #1. Those 
positive for trait B and negative for A will receive treatment #2. And, 
finally, those positive for both A and B will receive treatment #3.   

What should concern us here is that when treatment #1 or #2 are 
chosen, a clinical response will ensue that is superior to treatment #3 – 
the standard treatment, and the one favored by the RCT.  

There is no reason to expect this hypothetical situation does not obtain 
in many, if not most, RCTs conducted today. For example, Hanin 
demonstrates that sample heterogeneity with respect to outcome 
potential has seriously hampered contemporary breast cancer 
treatment research for decades. (ibid, pg. 4) 

IDOLATRY OF p-VALUES 

Then, there is the idolatry of p-values which today persists in medical 
science despite its growing disfavor in other fields. Using p<=0.05 as 
the threshold for rejecting the null hypothesis, was first proposed by 
Ronald Fisher in a low-key manner in his landmark book [11]. It has since 
become an almost religious commandment for medical researchers. 
But the selection of this arbitrary threshold is a flawed method for 
biomedical research, largely because: (1) it entails an underlying 
distribution under the null hypothesis that is unrealistic, and (2) it relies 
on the tacit assumption of a one- or two-sided bell-shaped tail, which 
most clinical trials can, at best, only approximate. “Therefore,” as 
Hanin concludes, “for sample sizes typically encountered in clinical 
trials…the maximum error in p-value determination may be 
comparable to, or even exceed, the small p-values used for rejecting 
the null hypothesis. Such sample sizes can only guarantee the 
correctness of the first decimal digit of the p-value. Thus, pursuit of 
small p-values in parametric analysis of clinical trials is indefensible [9].” 

SAMPLE SPECIFICATIONS 

Finally, consider that most statistical analyses of trial data assume a 
fixed sample size. Yet, in reality, sample size is rarely fixed; rather, it is 
most often variable owing to inclusion criteria, exclusion criteria and 
loss of subjects due to lack of benefit or side effects. As Hanin notes: 
“Statistical methods intended for fixed sample size lead to erroneous 
results if applied to samples of random size.” (ibid, pg.8) Clearly, this is 
an important consideration rarely discussed when assessing the validity 
of RCT results.  

SUMMARY 

In other words, there is nothing in the application of statistical 
methodology to RCTs that guarantees the real-world accuracy of its 
conclusions. In fact, there is much in the messy reality of clinical 
research that violates the fundamental assumptions of our statistical 
methods and, therefore, should engage our skepticism concerning the 
derived conclusions. The fallacy of comparing averages, heterogeneity 
of sample populations, arbitrariness and inherent flaws of p-value 
thresholds, and the violation of fixed sample size assumptions – these 
are but a few of the very real concerns every physician should 
entertain when considering whether and how much to credit statistical 
conclusions from RCTs. Moreover, these are the very reasons – in 
addition to internal bias and external influence - that statistical 
inferences from RCTs are so often false and/or irreproducible.  

What about systematic reviews and meta-analyses of RCTs? 

To quote a recent article in The Conversation: “A systematic review is 
only as good as the rigor it employs in combining similar studies of 
similar interventions with similar measurement of outcomes. When 
very different studies of different interventions are combined, the 
results are not informative [12].” 

It should be clear that none of the aforementioned concerns regarding 
RCTs disappear by comparing or pooling data from disparate samples 
and non-identical studies. Nor does such a review guarantee the 
elimination of internal biases or external influences. Moreover, data 
pooling does nothing to solve the fundamental problem clinicians face 
with RCTs, namely, the inability to extrapolate from the sample 
population to the individual patient.  

Hence, to accord systematic RCT reviews and meta-analyses the 
uppermost echelon in the evidence hierarchy is to presume that 
systematic data comparison or aggregation somehow cleanses RCTs of 
all their inherent flaws, biases and influences. Only in the rarest of 
cases, when the rigor of the comparison is impeccable, is this true. 
More commonly, as Judea Pearl recently tweeted of RCT systematic 
reviews, “It is comparing apples to oranges in hope of finding out 
something about bananas.”  
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The combination of RCT Data with Observational Data 

Fortunately, the work of Scott Mueller and Judea Pearl now points to a 
solution (or, at least, a partial solution) of the extrapolation issue. 
Specifically, they demonstrate that the combination of experimental 
data (e.g. from RCTs) with observational data enables us to do 
something RCTs and systematic RCT reviews cannot do – namely, 
define “informative bounds” as to the benefit (or harm) of treatment 
for specific individuals [13]. 

Consider, for example, that an independent survey is conducted on the 
same sample population as described earlier (Table 1). The survey 
simply asked participants whether they wished to undergo the offered 
treatment or not.  

For the sake of clarity, let us imagine an extreme case. Say, for 
example, that in the Treatment #1 group all of those patients who did 
not wish to receive the treatment (but did anyway) experienced zero 
effect; whereas, all of those patients who did wish to receive the 
treatment benefitted at a level 2 response rate.  And likewise, in 
Treatment #2, all of those who did not wish to undergo treatment (but, 
nevertheless, did) experienced zero effect; whereas, all of those 
patients who did wish to receive treatment also benefitted at a level 2 
response rate. 

Let us further assume that the survey of Treatment #3 patients 
revealed the same treatment effect regardless of preference.  

Hence, in this hypothetical instance, choice matters in determining the 
outcomes of Treatments #1 and #2. This is not evident from the RCT 
data alone, but emerges clearly as a result of combining RCT and 
observational data.  

While this is an extreme example with 100% benefit among the 
treatment-choosers and 0% among the non-choosers, one could easily 
imagine survey results of less than 100% for each group. In such a case, 
Mueller and Pearl teach certain probability calculations that can be 
used to establish upper and lower bounds on individual causal effects. 
“These bounds,” assert Mueller and Pearl, “… sometimes can be quite 
narrow and allow us to make accurate personalized decisions.” (ibid, 
pg. 13) Something quite impossible with RCT data alone. 

Some might argue that the whims of the patient have no place in 
modern medicine, that medical outcomes are purely a consequence of 
biochemical systems, and that this exercise is therefore nothing more 
than a fabulous stunt. But, as Pearl points out, “the observational data 
incorporates individuals’ whims, and whims are proxies for hidden 
factors that may affect that individual’s response to treatment.” He 
further notes that while confounding factors like individual whims are 
“usually problematic in causal inference…here confounding helps us, 
exposing the underlying mechanisms its associated whims and desires 
are a proxy for.” (ibid, pg. 10) 

Another application of this approach, whereby RCT results combine 
with observational data to yield more individualized information, is to 
calculate the probability of harm from a given treatment for a given 
individual or class of individuals. This requires the use of notation and 
mathematics that are generally unfamiliar to physicians. Eventually, 
one may expect that these equations will be incorporated into 
software allowing simple inputting of data to produce comprehensible 
answers for caregivers. Those readers wishing to engage more actively 
in the mathematics behind the results of this section should refer to 
Mueller and Pearl [13]. For now, let me summarize the results of this 
novel approach. 

 

 

 

Consider, the following scenario from Mueller and Pearl (Tables 2 and 
3): 

Table 2: Female Survival and Recovery Data 

Experimental Survival Death Total 

Drug 489 (49%) 511 (51%) 1,000 (50%) 

No Drug 210 (21%) 790 (79%) 1,000 (50%) 

CATE* 28% (Net benefit from the Drug) 

Observational Survival Death Total 

Drug 378 (27%) 1,022 (73%) 1,400 (70%) 

No Drug 420 (70%) 180 (30%) 600 (30%) 
*Conditional Average Treatment Effect 
 

Table 3: Male Survival and Recovery Data 

Experimental Survival Death Total 

Drug 490 (49%) 510 (51%) 1,000 (50%) 

No Drug 210 (21%) 790 (79%) 1,000 (50%) 

CATE 28% (Net benefit from the Drug) 

Observational Survival Death Total 

Drug 980 (70%) 420 (30%) 1,400 (70%) 

No Drug 420 (70%) 180 (30%) 600 (30%)  

 
In this scenario, an RCT (Experimental data) was conducted to assess 
the efficacy of the drug for the treatment of a certain cancer. Notice, 
the average net benefit from taking the drug versus not taking the drug 
is 28% for both males and females. Based on these findings (which 
were statistically significant), a reasonable conclusion might be that for 
some patients there is real benefit from the drug and, therefore, all 
patients - male and female - should take the drug in order to increase 
their chances of survival.   

Subsequent to the RCT, to continue this scenario, an independent 
research body decided to conduct a survey (observational data) to 
determine how many patients actually took the drug after it was 
recommended by their doctor. It turns out that only 70% of patients, 
male and female, actually took the drug after it was recommended. 
Rumors of adverse side effects and unexpected death apparently 
dissuaded the other 30% from complying with their doctors’ 
suggestions.  

Now, using the method described by Mueller and Pearl which 
combines the RCT and observational data, we can quantitatively assess 
the probability of harm from the drug. Notice, the RCT does not allow 
us to make this determination. Moreover, it suggests an equivalent 
chance of benefit (28%) in both males and females.  

Accordingly, the probability of harm, P(harm) = P(benefit) – CATE: 
where P(harm) denotes the probability of harm; P(benefit) denotes the 
probability of benefit, as computed using the method of Pearl and Tian 
[14]; and CATE denotes the conditional average treatment effect as 
determined by the RCT (i.e., 28%). In order to avoid more complex 
calculations, let us accept Pearl and Mueller’s calculations of the 
P(benefit) [13]. Hence, for males P(benefit) = 0.49 and for females 
P(benefit) = 0.28. Using these numbers, which depend for their 
derivation on both RCT and observational data, we can now calculate 
the P(harm) of the drug. 

For females, we see that P(harm) = 0.28 – 0.28 = 0. In other words, for 
females the drug offers the possibility of benefit (28%) without harm. 
(This is a somewhat counter-inductive conclusion, since looking at the 
observation study one might have concluded that the risk of death 
from the drug is greater in women than men. It is not. It turns out that 
women with more advanced disease took the drug, while women with 
less advanced disease chose not to take the drug.) 

For males, P(harm) = 0.49 – 0.28 = 0.21. Here we discover the 
emergence of new information that could dramatically affect the 
shared treatment decisions of doctors and patients. For males, while 
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the drug offers a 49% chance of benefit, this comes with a 21% chance 
of harm.  

None of this information is accessible from RCT data alone. Yet, as 
Mueller and Pearl write, “an observational study, however sloppy and 
uncontrolled, provides a deeper perspective on the treatment’s 
effectiveness. It incorporates individuals’ whims and desires that 
govern behavior under free-choice settings. And since such whims and 
desires are often proxies for factors that also affect outcomes and 
treatments (i.e., confounders), we gain additional insight hidden by 
RCTs.” (ibid, pg. 9)  

SUMMARY 

New methods now allow us to uncover personalized information by 
combining data from disparate sources – RCTs and observational 
studies. Alone, neither source is sufficient and both are deeply flawed. 
However, together they can yield what clinicians have always needed – 
namely, a solution (or, at least, a partial solution) to the extrapolation 
problem, whereby the decision to treat becomes less probabilistic and 
more relevant to each patient.  

The Questions Clinicians Ask 

So far our attention has been focused on methodologies for 
determining the best treatment for a given condition. Our question has 
been: Is one intervention superior to another intervention, or, to no 
intervention at all? But this is not the only question clinicians must 
routinely ask and answer; nor is it even the most important one. 
Indeed - What is this patient’s overall health status? What is their 
diagnosis? What are the causes of this condition? How shall I address 
these causes? What is this patient’s prognosis? – these questions, in 
addition to treatment decisions - are imbedded in virtually all 
patient/clinician encounters. As we shall see, each requires a different 
methodology or combination of methodologies to arrive at an answer.  

Let’s consider each of the aforementioned questions and ask: What 
kind of evidence will provide the most useful answers? 

WHAT IS THE CURRENT STATE OF THIS INDIVIDUAL’S HEALTH? 

An important task for any clinician is determining their patient’s state 
of health - i.e., their recuperative capacity. This is an essential part of 
every patient’s initial assessment. It will influence the clinician’s 
thinking about diagnostic possibilities, treatment options, prognosis 
and prevention.  

It is in this clinical arena that RCTs are, perhaps, least useful. Rather, an 
individual case study of the patient assumes paramount importance. In 
this regard, it is worth remembering the words of Hanin: “The great 
advantage of individual case studies is that learning everything that is 
there to know is quite feasible and that, in this case, inference from the 
generated data is not confounded by inter-subject variation. If one 
believes that biomedical processes are governed by natural laws and 
have causes, mechanisms and effects, then studying a single subject 
thoroughly should be very informative.” [9] 

In assessing an individual’s health, we turn to the history, physical 
examination, laboratory tests, imaging studies, etc. Our assessment will 
be both qualitative and quantitative. For example, we will want to 
know the patient’s family history of health and illness, and the 
patient’s personal history of illness or injury and recovery. We will also 
need numbers: Blood counts, electrolyte levels, body weight, etc. And 
our imaging studies will be useful as well, in both ruling in and ruling 
out certain maladies.  

True, the case series of patients we witness during our own careers will 
influence us, just as will the case series upon which laboratory “normal 
ranges” are founded. And RCTs will play a role, too, as they determine 
at times what tests we order or forego, what questions we ask, what 
we consider relevant and what we chose to ignore. In fact, all of our 

compounded knowledge will be brought to bear on this business of 
assessing a patient’s health status. 

But at the end of the day, it is the individual case study of the patient 
that tops the evidence hierarchy in this area of investigation. 

WHAT IS THE PATIENT’S DIAGNOSIS? 

What evidence is required to diagnose a patient’s illness?  

Of course, we first need the results of the individual’s case study to 
define his or her signs and symptoms. We then need to know the array 
of diagnostic categories, the differential diagnosis, into which those 
signs and symptoms might fall. Generally, this knowledge is derived 
from descriptive observations, individual case studies and case series. 
Less commonly, diagnostic categories arise from more sophisticated 
clinical trials.  

Further, we benefit from certain heuristic principles by which to 
organize our thoughts – most notably Ockham’s razor, which combines 
with deductive reasoning in our attempts to subsume all signs and 
symptoms under a single diagnostic category. All of this, of course, is 
buttressed by our broader knowledge of medical science – i.e., 
anatomy, pathophysiology, genetics, etc. – which supports our ultimate 
diagnosis.  

As you can see, there is no primacy of RCTs in this mix. Rather there is 
the forever-business of science, grasping for better and better 
explanations to encompass a wider and wider array of observations 
and discoveries. Sometimes this quest involves RCTs; other times, it 
involves serial or individual observations, hypotheses and even trial 
and error. 

WHAT IS THE CAUSE (OR CAUSES) OF THE PATIENT’S ILLNESS? 

Traditional allopathic medicine is generally content to ascribe a single 
cause to a patient’s illness. Hence, a patient’s pneumonia is caused by 
the proliferation of pneumococcus in the lungs; a patient’s leukemia is 
the consequence of a genetic mutation; warts are the result of HPV 
infection; and so on. At times, there are vague references to “triggers” 
or “stress” which somehow contribute or predispose. But generally, 
disease is seen as emanating from a single source which ignites a 
sequence of linear fuses, each lighting the next and the next, until the 
disease-bomb finally explodes. 

What is the evidence for these blunt beginnings - these isolated 
material causes that purportedly result in our patients’ illnesses? As it 
turns out, the single-source hypothesis of traditional western medicine 
is presumed, not proven. There is no real evidence behind it, other 
than that the elimination of the presumed single cause often 
ameliorates the disease. But removing the intervening billiard green 
prevents the cue ball from striking the target ball; and yet, the billiard 
green is never assumed to be the cause of the target ball’s motion.  

In other words, one of the foundational pillars of modern medicine 
stands but weakly supported – a bare possibility among many other 
equally plausible possibilities. 

Consider this: traditional western medicine has declined to investigate 
its single-cause presumption by asking the obvious question, “Why 
today? Why now?” Pneumococcus, for example, has been a patient’s 
cordial cohabitant for some time. Then, suddenly, it busts out in a rage 
against the tissues of its once-hospitable host. Why now? Or, the HPV 
virus has been a ubiquitous neighbor for decades. Suddenly it discovers 
an unwonted receptivity, and tumors (e.g., warts) form. Why today? 

It turns out, when our causal presumptions are probed deeper, a full 
array of other contributory causes emerge – including contributory 
noetic causes. When asked why today, for example, the heart attack 
victim will reply: “I suppose it has something to do with my mother-in-
law moving in for the next YEAR!” Or, the appendicitis victim will say, “I 
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just really needed a rest from work.” Or, the breast cancer victim will 
disclose, “I just feel so guilty for having this ongoing affair.”  

Of course, these discoveries are only now being described in small case 
series [15]. Larger case series with well-thought parameters and metrics 
will surely follow in due course. The point, for our purposes, is to 
recognize that the multi-cause hypothesis presently exists in 
opposition to the single cause hypothesis, and that the ascendency of 
one notion over the other will likely result not only from clever RCTs, 
but also from the same observational and deductive processes typical 
in the conceptual evolution of the hard sciences.  

HOW SHALL THE PATIENT’S ILLNESSES BE TREATED? 

As we have discussed, it is in answer to this questions that RCTs and 
their systematic reviews can be of most value. They offer us statistical 
information pertinent to groups of patients. But no RCT or systematic 
review, in and of itself, can offer us precise information bearing on the 
patient who sits before us.  

Fortunately, the work of Mueller and Pearl offers hope in this 
connection [10]. For, as we have seen, the combination of observational 
data and experimental data using the methods of causal inference can 
produce patient-specific probability bounds, and sometimes even 
precise personalized predictions.  

But in truth, this kind of information addresses only a small fraction of 
the treatment decisions a practitioner commonly requires. Consider, 
for example, the decision to suture a fresh laceration. While there may 
be an RCT that showed the superiority of early wound closure over 
closure “by secondary intention,” for certain kinds of wounds, 
depending on their depth and location, that RCT may not pertain. 
Likewise, when the diagnosis is uncertain, the decision to administer a 
drug as a clinical trial or watchfully await further developments is most 
often based on prior experience or the teachings of an authority figure.  

In other words, when well-designed and well-executed RCTs exist and 
apply to the circumstances, evidence-based medicine (especially when 
coupled with methods of causal inference) should prevail. But for the 
multitude of maladies and conditions that remain unstudied by such 
means, the teachings of an authority figure, individual observations, 
case studies and simple logic – all combine to influence treatment 
decisions.  

HOW CAN WE PREDICT A PATIENT’S OUTCOME? 

In a word, we cannot predict any one patient’s outcome with certainty. 
We have seen how RCTs fail to justify an extrapolation from group data 
to individual outcomes - from broad probabilistic information to 
precision personal information. The fallacy of extrapolation is real; it 
arises from the enormous individual variability between one individual 
and the next.  

True, the methods of Mueller and Pearl hold promise in allowing for 
more precise personal predictions [10]. But, except in the rarest 
instance, these new methods of inference only narrow the bounds of 
probability; they do not pin a perfect prediction on any patient. 

Moreover, the only case study that can guarantee an accurate 
prediction is one that “matches” the patient perfectly. And that 
virtually never occurs. For example, if one identical twin develops 
Parkinson’s Disease, the likelihood that the other will develop 
Parkinson’s Disease is not 100%. Rather, it is 5% [16]. Why? Because, 
even with identical twins, there is no perfect match across all 
parameters. 

And yet often patients do not ask for or need a precise prognosis, 
especially when the diagnosis is dire. What they ask for is hope. They 
need to know that their condition is survivable – that they have a 
chance. Here, an anecdote – a single case report - proves the possibility 
of survival and thereby ignites the flames of hope. For many patients 

and practitioners there is no datum more important. True, a case series 
can add to the illumination. And, where treatment options exist, an 
RCT can provide guidance as to which option may be best, and so, 
further stoke the flames of hope. But it is often the anecdote that holds 
the high ground in matters of prognostication – at least, from the 
patient’s perspective. 

CONCLUSION 

Careful analysis of the evidence required to function optimally in the 
clinical world reveals that the current evidence hierarchy, the so-called 
truth pyramid, is insupportable. The fact is, all of our evidence sources 
are flawed. At times, that best evidence will be RCTs or their systematic 
review. At other times, observational data will best answer our needs 
and our patients’ needs. At still other times, it will be the combination 
of RCTs and observational studies that provide the best evidence for 
clinical decision making. 

In 2007, Wayne Jonas proposed that the evidence pyramid be flattened 
and replaced, as he put it, with an “evidence house” [17]. If we envision 
that house as a single-story, ranch-style structure, the present author 
agrees. And, to extend the metaphor, in each room a separate clinically 
relevant question is asked. Sometimes one methodology occupies a 
room to provide the best answer possible. Other times, two or more 
methodologies are necessary to enhance the quality and applicability 
of the answer.  

It is time to flatten the truth pyramid - and to accord both RCTs and 
descriptive evidence their proper place in the evidence house of clinical 
medicine. 
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